- Code: Select all
,--------------------,--------------------,----------------,
| 149 129 3 |A249 5 6 | 7 8 A249 |
| 469 2569 7 | 1 8 B249 |B249 3 56 |
| 469 25689 2489 | 3 C2479 C2479 | 1 C249 56 |
:--------------------+--------------------+----------------:
| 2 4 5 | 789 1379 1379 | 6 79 18 |
| 8 3 1 | 6 79 5 | 249 2479 249 |
| 79 79 6 | 248 124 124 | 3 5 18 |
:--------------------+--------------------+----------------:
| 3 279 249 | 5 6 2479 | 8 1 A249 |
| 5 1289 2489 | 249 12349 12349 |B249 6 7 |
| 14679 12679 249 | 2479 12479 8 | 5 C249 3 |
'--------------------'--------------------'----------------'
A-, B-, and C-marked cells each contain one of 249 in each of b239.
The permutations in ABC all have the same parity.
If b29 have the same permutation, their B digit is in b8 forced into r9, where it forms a triple with r9c38.
If they have different permutations (of the same parity), all their corresponding digits are different and ABC each contain 249 once each. 249: c3C \ r39b7 => -249r9c12.
Either way -249r9c12.
- Code: Select all
,------------------,--------------------,----------------,
| 149 129 3 |#249 5 6 | 7 8 #249 |
| 469 2569 7 | 1 8 #249 |#249 3 56 |
| 469 25689 289 | 3 abdC#249+7 e2479 | 1 bC#249 56 |
:------------------+--------------------+----------------:
| 2 4 5 | 789 139–7 1379 | 6 b79 18 |
| 8 3 1 | 6 c79 5 |b249 b2479 b249 |
| 79 79 6 | 248 124 124 | 3 5 18 |
:------------------+--------------------+----------------:
| 3 279 249 | 5 6 a#249+7 | 8 1 #249 |
| 5 1289 2489 |#249 12349 12349 |#249 6 7 |
| 167 167 249 | 2479 1249–7 8 | 5 bC#249 3 |
'------------------'--------------------'----------------'
Almost TH – if all of #-marked cells are restricted to 249, C-marked cells are a 249 remote triple.
7# = [249C, 9b6C \ r5c58] – (9=7)r5c5 – 7r3c5 = 7r3c6 – Loop => –7r49c5
- Code: Select all
,------------------,--------------------,----------------,
| 149 129 3 |#249 5 6 | 7 8 #249 |
| 469 2569 7 | 1 8 #249 |#249 3 56 |
| 469 25689 289 | 3 a#249+7 249–7 | 1 #249 56 |
:------------------+--------------------+----------------:
| 2 4 5 | 789 139 1379 | 6 79 18 |
| 8 3 1 | 6 79 5 | 249 2479 249 |
| 79 79 6 | 248 124 124 | 3 5 18 |
:------------------+--------------------+----------------:
| 3 c279 249 | 5 6 ad#249+7 | 8 1 #249 |
| 5 1289 2489 |#249 12349 12349 |#249 6 7 |
|b167 b167 249 |2479 a#249+1 8 | 5 #249 3 |
'------------------'--------------------'----------------'
TH 249#
(7=1)# – (1=67)r9c12 – 7r7c2 = 7r7c6 => –7r3c6
- Code: Select all
,------------------,-------------------,--------------,
| 149 129 3 |*249 5 6 | 7 8 a#24+9|
| 469 2569 7 | 1 8 *249 | 249 3 56 |
| 469 25689 289 | 3 7 *249 | 1 #24 56 |
:------------------+-------------------+--------------:
| 2 4 5 | 78 13 137 | 6 9 18 |
| 8 3 1 | 6 9 5 | 24 7 24 |
| 79 79 6 | 248 124 124 | 3 5 18 |
:------------------+-------------------+--------------:
| 3 279 249 | 5 6 ad#24+7–9| 8 1 b249 |
| 5 1289 2489 |d249 1234 12349 |c249 6 7 |
| 67–1 67–1 249 | 2479 ad#24+1 8 | 5 #24 3 |
'------------------'-------------------'--------------'
9c9b2 \ r17c6 => –9r7c7
bivalue oddagon 249#+b2
(1|7=9)# – 9r7c9 = 9r8c7 – (9=1|7)b8p348 => 1r9c5 = 7r7c6
1r9c5 = 7r7c6 – 7r7c2 = 67r9c12 => –1r9c12
- Code: Select all
,------------,--------------,--------------,
| 1 29 3 |#24 5 6 | 7 8 b#24+9|
| 4 5 7 | 1 8 29 | 29 3 6 |
| 6 8 29 | 3 7 249 | 1 #24 5 |
:------------+--------------+--------------:
| 2 4 5 | 7 3 1 | 6 9 8 |
| 8 3 1 | 6 9 5 | 24 7 24 |
| 9 7 6 | 8 24 24 | 3 5 1 |
:------------+--------------+--------------:
| 3 29 249 | 5 6 7 | 8 1 c249 |
| 5 1 8 | 24–9 24 3 |d249 6 7 |
| 7 6 249 |a#24+9 1 8 | 5 #24 3 |
'------------'--------------'--------------'
bivalue oddagon 24#
9r9c4 = 9r1c9 – 9r7c9 = 9r8c7 => –9r8c4, stte
Marek