.
SER = 9.0
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 123 4 6 ! 129 12359 8 ! 7 235 135 !
! 5 123 9 ! 6 123 7 ! 13 4 8 !
! 8 7 123 ! 4 1235 123 ! 6 235 9 !
+-------------------+-------------------+-------------------+
! 123 8 5 ! 129 12349 1234 ! 123 7 6 !
! 7 123 4 ! 8 6 5 ! 123 9 13 !
! 6 9 123 ! 7 123 123 ! 5 8 4 !
+-------------------+-------------------+-------------------+
! 1234 6 1237 ! 12 124 9 ! 8 35 357 !
! 9 5 8 ! 3 7 6 ! 4 1 2 !
! 1234 123 1237 ! 5 8 124 ! 9 6 37 !
+-------------------+-------------------+-------------------+
107 candidates
Like jco, I'll apply eleven's replacement method, but in my own way, with no variablesIn order to better show the difference, I'll choose the same block b4. (In the present case, b1 would work as well.)
In block b4, digits 1, 2, 3 appear in only 3 places and each of them must therefore occupy one of these places.
A priori, we can't arbitrarily choose which place each of them occupies, because some of these choices wouldn't be compatible with the givens (i.e. with r8c8 and r8c9).
But suppose we replace every occurrence of 1 2 3 (including the givens) in the above resolution state, by the 3 digits:
- Code: Select all
+-------------------+-------------------+-------------------+
! 123 4 6 ! 129 12359 8 ! 7 1235 1235 !
! 5 123 9 ! 6 123 7 ! 123 4 8 !
! 8 7 123 ! 4 1235 123 ! 6 1235 9 !
+-------------------+-------------------+-------------------+
! 1 8 5 ! 1239 12349 1234 ! 123 7 6 !
! 7 2 4 ! 8 6 5 ! 123 9 123 !
! 6 9 3 ! 7 123 123 ! 5 8 4 !
+-------------------+-------------------+-------------------+
! 1234 6 1237 ! 123 1234 9 ! 8 1235 12357 !
! 9 5 8 ! 123 7 6 ! 4 123 123 !
! 1234 123 1237 ! 5 8 1234 ! 9 6 1237 !
+-------------------+-------------------+-------------------+
Now, we can choose any arrangement of values among {1, 2, 3} for r4c1, r5c2, r6c3. If we get a solution, it will be a solution of the original puzzle modulo some renaming of 1, 2, 3 to be found based on the givens:
- Code: Select all
+-------------------+-------------------+-------------------+
! 123 4 6 ! 129 12359 8 ! 7 1235 1235 !
! 5 123 9 ! 6 123 7 ! 123 4 8 !
! 8 7 123 ! 4 1235 123 ! 6 1235 9 !
+-------------------+-------------------+-------------------+
! 1 8 5 ! 1239 12349 1234 ! 123 7 6 !
! 7 2 4 ! 8 6 5 ! 123 9 123 !
! 6 9 3 ! 7 123 123 ! 5 8 4 !
+-------------------+-------------------+-------------------+
! 1234 6 1237 ! 123 1234 9 ! 8 1235 12357 !
! 9 5 8 ! 123 7 6 ! 4 123 123 !
! 1234 123 1237 ! 5 8 1234 ! 9 6 1237 !
+-------------------+-------------------+-------------------+
No x, y, z here. The advantage of proceeding this way is, you can use your usual solving methods or any solver.
Using SudoRules simplest-first strategy, one gets a 2-)step solution in BC3:
- Code: Select all
(solve-sukaku-grid
+-------------------+-------------------+-------------------+
! 123 4 6 ! 129 12359 8 ! 7 1235 1235 !
! 5 123 9 ! 6 123 7 ! 123 4 8 !
! 8 7 123 ! 4 1235 123 ! 6 1235 9 !
+-------------------+-------------------+-------------------+
! 1 8 5 ! 1239 12349 1234 ! 123 7 6 !
! 7 2 4 ! 8 6 5 ! 123 9 123 !
! 6 9 3 ! 7 123 123 ! 5 8 4 !
+-------------------+-------------------+-------------------+
! 1234 6 1237 ! 123 1234 9 ! 8 1235 12357 !
! 9 5 8 ! 123 7 6 ! 4 123 123 !
! 1234 123 1237 ! 5 8 1234 ! 9 6 1237 !
+-------------------+-------------------+-------------------+
)
singles ==> r4c7=2, r2c5=2, r6c5=1, r6c6=2
finned-x-wing-in-columns: n1{c6 c2}{r9 r3} ==> r3c3≠1
singles ==> r3c3=2, r1c1=3, r2c2=1, r2c7=3, r5c7=1, r5c9=3, r9c2=3
biv-chain[3]: r1c4{n1 n9} - r4c4{n9 n3} - c6n3{r4 r3} ==> r3c6≠1
stte
346198725
519627348
872453619
185934276
724865193
693712584
261349857
958276431
437581962
By observing cells r8c8 and r8c9, one can see that this is not a solution to the original puzzle; but replace 3 by 1 and 1 by 2 (and therefore 2 by 3) and you'll get the solution.
The same method can be applied to find a 1-step solution, but it will be in Z5 instead of BC3:[For the user of SudoRules], the simplest way of doing this is:
- Code: Select all
(defglobal ?*RS* = (create$ (clean-grid-list
+-------------------+-------------------+-------------------+
! 123 4 6 ! 129 12359 8 ! 7 1235 1235 !
! 5 123 9 ! 6 123 7 ! 123 4 8 !
! 8 7 123 ! 4 1235 123 ! 6 1235 9 !
+-------------------+-------------------+-------------------+
! 1 8 5 ! 1239 12349 1234 ! 123 7 6 !
! 7 2 4 ! 8 6 5 ! 123 9 123 !
! 6 9 3 ! 7 123 123 ! 5 8 4 !
+-------------------+-------------------+-------------------+
! 1234 6 1237 ! 123 1234 9 ! 8 1235 12357 !
! 9 5 8 ! 123 7 6 ! 4 123 123 !
! 1234 123 1237 ! 5 8 1234 ! 9 6 1237 !
+-------------------+-------------------+-------------------+
)))
(find-sukaku-1-steppers-wrt-W1 ?*RS*)
[/For the user of SudoRules]
- Code: Select all
z-chain[5]: b1n1{r3c3 r2c2} - r9c2{n1 n3} - c6n3{r9 r4} - r4c4{n3 n9} - r1c4{n9 .} ==> r3c6≠1
stte
(with the same isomorphism at the end.)
Remark:
Notice that the original puzzle was in W7.
The method has allowed an apparent reduction of complexity from W7 to BC3. See my analyses here
http://forum.enjoysudoku.com/eleven-s-variable-replacement-method-and-its-complexity-t39277.html for an explanation of this reduction.