12

Post puzzles for others to solve here.

12

Postby eleven » Sun Sep 26, 2021 11:42 am

Code: Select all
 +-------+-------+-------+
 | 1 6 . | 8 . 3 | . . 2 |
 | . . 3 | . . 4 | 8 . . |
 | . 4 . | . 7 . | . 5 . |
 +-------+-------+-------+
 | 3 . . | . 9 . | . . 4 |
 | 4 . 5 | . . . | . 7 . |
 | 9 . . | 7 . . | . . . |
 +-------+-------+-------+
 | . . . | . . 6 | . . . |
 | . . . | . . . | . 3 9 |
 | . . . | . . 9 | 5 4 . |
 +-------+-------+-------+

Solvable with variable replacement and basics.
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: 12

Postby denis_berthier » Sun Sep 26, 2021 2:40 pm

.
Withdrawn: solution for the wrong puzzle
Last edited by denis_berthier on Mon Sep 27, 2021 3:11 am, edited 1 time in total.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: 12

Postby eleven » Sun Sep 26, 2021 5:49 pm

Since i will be off for the next 2 weeks, i already post my solution (i saw a one-stepper too).
Hidden Text: Show
3 pairs to get here.
Code: Select all
+----------------------+----------------------+----------------------+
| 1      6      7      | 8      5      3      | 4      9      2      |
| 25     259    3      | 1269   126    4      | 8      16     7      |
| 8      4      29     | 1269   7     #12     | 16     5      3      |
+----------------------+----------------------+----------------------+
| 3      7      1268   |#12     9      5      | 126    1268   4      |
| 4      128    5      | 36     36     128    | 9      7      18     |
| 9      128    1268   | 7      4      128    | 3      1268   5      |
+----------------------+----------------------+----------------------+
| 25     12359  1249   | 45     123    6      | 7      128    18     |
| 6      1258   1248   | 45     128    7      |#12     3      9      |
| 7      1238   128    | 123    1238   9      | 5      4      6      |
+----------------------+----------------------+----------------------+

Since the digit in r4c3 also goes to r3c6 and r8c7, we have chances, that the replacement will lead to an easier grid.
So we replace all single 1's and 2's in all cells by 12. This gives a sukaku with exactly 2 solutions, where 1's and 2's are switched (setting 1r1c1 is the original puzzle, setting it to 2 the original puzzle with 1 and 2 switched). The eliminiations made so far are independant of, which is 1 or 2, and can be further used.
Code: Select all
+----------------------+----------------------+----------------------+
| 12     6      7      | 8      5      3      | 4      9      12     |
| 125    1259   3      | 1269   126    4      | 8      126    7      |
| 8      4      129    | 1269   7      12     | 126    5      3      |
+----------------------+----------------------+----------------------+
| 3      7      1268   |#12     9      5      | 126    1268   4      |
| 4      128    5      | 36     36     128    | 9      7      128    |
| 9      128    1268   | 7      4      128    | 3      1268   5      |
+----------------------+----------------------+----------------------+
| 125    12359  1249   | 45     123    6      | 7      128    128    |
| 6      1258   1248   | 45     128    7      | 12     3      9      |
| 7      1238   128    | 123    1238   9      | 5      4      6      |
+----------------------+----------------------+----------------------+

Now we choose 1 or 2 for r4c4 and try to solve the puzzle. If at the end not 1 is in r1c1 (would be the case for starting with 1r4c4, we have to switch 1 and 2 in the solution to fit to the given puzzle).
Pair and locked candidate to solve.
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: 12

Postby denis_berthier » Mon Sep 27, 2021 2:54 am

eleven wrote:Since the digit in r4c3 also goes to r3c6 and r8c7,

Of course, you mean r4c4.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: 12

Postby marek stefanik » Mon Sep 27, 2021 7:55 pm

Code: Select all
.-----------------.-----------------.---------------.
| 1   6      7    | 8     5     3   | 4    9     2  |
|d25  259    3    | 169–2 16–2  4   | 8    16    7  |
| 8   4      9–2  | 1269  7    a12  | 16   5     3  |
:-----------------+-----------------+---------------:
| 3   7      1268 |a12    9     5   | 126  1268  4  |
| 4   128    5    | 36    36    128 | 9    7     18 |
| 9   128    1268 | 7     4     128 | 3    1268  5  |
:-----------------+-----------------+---------------:
|c25  12359  1249 | 45    123   6   | 7   b128   18 |
| 6   1258   1248 | 45    128   7   |a12   3     9  |
| 7   1238   128  | 123   1238  9   | 5    4     6  |
'-----------------'-----------------'---------------'
Whichever digit a appears in r3c6 is also true in r4c4 and r8c7.
2a = r7c8 – r7c1 = r2c1 => –2r2c45, r3c3

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021


Return to Puzzles