.
Thanks for your solutions. Sometime, I should code RT.
But, for the time being, here's mine, with
the two most frequent impossible 3-digit patterns EL13c290 and EL13c234 (not counting tridagon).
See the
http://forum.enjoysudoku.com/how-to-deal-with-large-numbers-of-patterns-t40889.html thread for more details about these two patterns.
The start should now look familiar, with the simplest form of tridagon:
- Code: Select all
hidden-pairs-in-a-column: c3{n6 n9}{r4 r6} ==> r6c3≠8, r6c3≠5, r6c3≠4, r6c3≠2, r4c3≠8, r4c3≠4, r4c3≠2
singles ==> r6c1=5, r5c1=3
+-------------------+-------------------+-------------------+
! 1 248 3 ! 468 24568 256 ! 7 248 9 !
! 248 5 7 ! 1489 1248 29 ! 248 3 6 !
! 9 6 248 ! 3478 23478 23 ! 1 5 248 !
+-------------------+-------------------+-------------------+
! 248 7 69 ! 4689 2468 1 ! 3 248 5 !
! 3 1248 1248 ! 5 248 7 ! 6 9 248 !
! 5 248 69 ! 34689 23468 2369 ! 248 7 1 !
+-------------------+-------------------+-------------------+
! 6 3 1258 ! 17 9 4 ! 258 128 278 !
! 47 9 145 ! 2 13567 8 ! 45 146 347 !
! 2478 1248 12458 ! 1367 13567 356 ! 9 12468 23478 !
+-------------------+-------------------+-------------------+
tridagon for digits 2, 4 and 8 in blocks:
b4, with cells: r5c3 (target cell), r6c2, r4c1
b6, with cells: r5c9, r6c7, r4c8
b1, with cells: r3c3, r1c2, r2c1
b3, with cells: r3c9, r1c8, r2c7
==> r5c3≠2,4,8
singles ==> r5c3=1, r9c2=1
naked-pairs-in-a-row: r8{c3 c7}{n4 n5} ==> r8c9≠4, r8c8≠4, r8c5≠5, r8c1≠4
singles ==> r8c1=7, r8c9=3
whip[1]: b8n5{r9c6 .} ==> r9c3≠5
Impossible patterns are looked for at this point. Here are 3, only 2 of which will be effectively used; I kept the first to show a case with the same EL13c290 relation having two instances that share many cells (and also share them with the tridagon) but have different ones in the middle stack.
- Code: Select all
OR5-EL13c290 relation for digits: 2, 4 and 8
in cells: (r5c9 r6c5 r6c2 r6c7 r4c5 r4c1 r4c8 r1c2 r1c8 r2c1 r2c7 r3c5 r3c9)
with 5 guardians : n3r6c5 n6r6c5 n6r4c5 n3r3c5 n7r3c5
+-------------------------+-------------------------+-------------------------+
! 1 248# 3 ! 468 24568 256 ! 7 248# 9 !
! 248# 5 7 ! 1489 1248 29 ! 248# 3 6 !
! 9 6 248 ! 3478 23478#@ 23 ! 1 5 248# !
+-------------------------+-------------------------+-------------------------+
! 248# 7 69 ! 4689 2468#@ 1 ! 3 248# 5 !
! 3 248 1 ! 5 248 7 ! 6 9 248# !
! 5 248# 69 ! 34689 23468#@ 2369 ! 248# 7 1 !
+-------------------------+-------------------------+-------------------------+
! 6 3 258 ! 17 9 4 ! 258 128 278 !
! 7 9 45 ! 2 16 8 ! 45 16 3 !
! 248 1 248 ! 367 3567 356 ! 9 2468 2478 !
+-------------------------+-------------------------+-------------------------+
This will not be used
OR3-EL13c290 relation for digits: 2, 4 and 8
in cells: (r3c9 r2c5 r2c1 r2c7 r1c5 r1c2 r1c8 r4c1 r4c8 r6c2 r6c7 r5c5 r5c9)
with 3 guardians : n1r2c5 n5r1c5 n6r1c5
+-------------------------+-------------------------+-------------------------+
! 1 248# 3 ! 468 24568#@ 256 ! 7 248# 9 !
! 248# 5 7 ! 1489 1248#@ 29 ! 248# 3 6 !
! 9 6 248 ! 3478 23478 23 ! 1 5 248# !
+-------------------------+-------------------------+-------------------------+
! 248# 7 69 ! 4689 2468 1 ! 3 248# 5 !
! 3 248 1 ! 5 248# 7 ! 6 9 248# !
! 5 248# 69 ! 34689 23468 2369 ! 248# 7 1 !
+-------------------------+-------------------------+-------------------------+
! 6 3 258 ! 17 9 4 ! 258 128 278 !
! 7 9 45 ! 2 16 8 ! 45 16 3 !
! 248 1 248 ! 367 3567 356 ! 9 2468 2478 !
+-------------------------+-------------------------+-------------------------+
OR2-EL13c234 relation for digits: 2, 4 and 8
in cells: (r3c9 r1c2 r1c8 r2c5 r2c7 r6c2 r6c7 r5c5 r5c2 r5c9 r4c5 r4c1 r4c8)
with 2 guardians : n1r2c5 n6r4c5
+----------------------+----------------------+----------------------+
! 1 248# 3 ! 468 24568 256 ! 7 248# 9 !
! 248 5 7 ! 1489 1248#@ 29 ! 248# 3 6 !
! 9 6 248 ! 3478 23478 23 ! 1 5 248# !
+----------------------+----------------------+----------------------+
! 248# 7 69 ! 4689 2468#@ 1 ! 3 248# 5 !
! 3 248# 1 ! 5 248# 7 ! 6 9 248# !
! 5 248# 69 ! 34689 23468 2369 ! 248# 7 1 !
+----------------------+----------------------+----------------------+
! 6 3 258 ! 17 9 4 ! 258 128 278 !
! 7 9 45 ! 2 16 8 ! 45 16 3 !
! 248 1 248 ! 367 3567 356 ! 9 2468 2478 !
+----------------------+----------------------+----------------------+
EL13c234-OR2-whip[2]: OR2{{n6r4c5 | n1r2c5}} - r8c5{n1 .} ==> r9c5≠6, r6c5≠6, r1c5≠6Ultra-persistency of the ORk relations:
- Code: Select all
+-------------------+-------------------+-------------------+
! 1 248 3 ! 468 2458 256 ! 7 248 9 !
! 248 5 7 ! 1489 1248 29 ! 248 3 6 !
! 9 6 248 ! 3478 23478 23 ! 1 5 248 !
+-------------------+-------------------+-------------------+
! 248 7 69 ! 4689 2468 1 ! 3 248 5 !
! 3 248 1 ! 5 248 7 ! 6 9 248 !
! 5 248 69 ! 34689 2348 2369 ! 248 7 1 !
+-------------------+-------------------+-------------------+
! 6 3 258 ! 17 9 4 ! 258 128 278 !
! 7 9 45 ! 2 16 8 ! 45 16 3 !
! 248 1 248 ! 367 357 356 ! 9 2468 2478 !
+-------------------+-------------------+-------------------+
At least one candidate of a previous EL13c290-OR3-relation between candidates n1r2c5 n5r1c5 n6r1c5 has just been eliminated.
There remains an EL13c290-OR2-relation between candidates: n1r2c5 n5r1c5
EL13c290-OR2-whip[3]: r8c5{n6 n1} - OR2{{n1r2c5 | n5r1c5}} - r9n5{c5 .} ==> r9c6≠6- Code: Select all
biv-chain[3]: r3c6{n2 n3} - r9c6{n3 n5} - b2n5{r1c6 r1c5} ==> r1c5≠2
whip[7]: b4n4{r6c2 r4c1} - c8n4{r4 r9} - c8n6{r9 r8} - c5n6{r8 r4} - r4n2{c5 c8} - r1n2{c8 c6} - c6n6{r1 .} ==> r1c2≠4
whip[1]: c2n4{r6 .} ==> r4c1≠4
biv-chain[2]: r8n4{c7 c3} - b1n4{r3c3 r2c1} ==> r2c7≠4
whip[6]: c8n6{r9 r8} - c5n6{r8 r4} - c6n6{r6 r1} - r1n5{c6 c5} - r1n4{c5 c4} - r4n4{c4 .} ==> r9c8≠4
whip[6]: r4c1{n2 n8} - r9c1{n8 n4} - b1n4{r2c1 r3c3} - c9n4{r3 r5} - b6n8{r5c9 r6c7} - r2c7{n8 .} ==> r2c1≠2
whip[3]: c1n2{r9 r4} - c2n2{r5 r1} - c8n2{r1 .} ==> r9c9≠2
t-whip[6]: b7n4{r9c3 r9c1} - c1n2{r9 r4} - c1n8{r4 r2} - r2c7{n8 n2} - b6n2{r6c7 r5c9} - c9n4{r5 .} ==> r3c3≠4
hidden-single-in-a-block ==> r2c1=4
whip[3]: c1n8{r9 r4} - c2n8{r5 r1} - c8n8{r1 .} ==> r9c9≠8
z-chain[4]: r3c3{n8 n2} - r3c9{n2 n4} - r9c9{n4 n7} - c5n7{r9 .} ==> r3c5≠8
z-chain[4]: r3n7{c5 c4} - r3n4{c4 c9} - r9c9{n4 n7} - c5n7{r9 .} ==> r3c5≠3, r3c5≠2
t-whip[5]: r3c6{n3 n2} - r2n2{c6 c7} - r1n2{c8 c2} - r6n2{c2 c5} - c5n3{r6 .} ==> r9c6≠3
singles ==> r9c6=5, r1c5=5
finned-x-wing-in-rows: n4{r1 r4}{c8 c4} ==> r6c4≠4
EL13c234-OR2-ctr-whip[5]: c5n8{r6 r2} - r2n1{c5 c4} - c4n9{r2 r4} - r4c3{n9 n6} - OR2{{n1r2c5 n6r4c5 | .}} ==> r6c4≠8z-chain[6]: c5n4{r6 r3} - r3n7{c5 c4} - r7c4{n7 n1} - r8c5{n1 n6} - r4n6{c5 c3} - r4n9{c3 .} ==> r4c4≠4
The end is easy, in S3+BC4:
- Code: Select all
whip[1]: b5n4{r6c5 .} ==> r3c5≠4
singles ==> r3c5=7, r9c5=3
naked-triplets-in-a-row: r6{c2 c5 c7}{n2 n4 n8} ==> r6c6≠2
whip[1]: c6n2{r3 .} ==> r2c5≠2
biv-chain[4]: r4n4{c8 c5} - c5n6{r4 r8} - r9c4{n6 n7} - r9c9{n7 n4} ==> r5c9≠4
biv-chain[4]: c4n3{r6 r3} - r3n4{c4 c9} - r9c9{n4 n7} - r9c4{n7 n6} ==> r6c4≠6
biv-chain[5]: r2c5{n8 n1} - c4n1{r2 r7} - b8n7{r7c4 r9c4} - r9c9{n7 n4} - r3n4{c9 c4} ==> r3c4≠8
biv-chain[3]: b1n2{r1c2 r3c3} - r3n8{c3 c9} - b3n4{r3c9 r1c8} ==> r1c8≠2
biv-chain[3]: b6n4{r6c7 r4c8} - r1c8{n4 n8} - r2c7{n8 n2} ==> r6c7≠2
biv-chain[3]: c2n4{r5 r6} - r6c7{n4 n8} - r5c9{n8 n2} ==> r5c2≠2
biv-chain[3]: r5n2{c9 c5} - r6n2{c5 c2} - b1n2{r1c2 r3c3} ==> r3c9≠2
singles ==> r2c7=2, r2c6=9
whip[1]: r2n8{c5 .} ==> r1c4≠8
t-whip[2]: r1n8{c8 c2} - b4n8{r6c2 .} ==> r4c8≠8
biv-chain[3]: r3c9{n4 n8} - b6n8{r5c9 r6c7} - b6n4{r6c7 r4c8} ==> r1c8≠4
stte