11-8-2023

Post puzzles for others to solve here.

11-8-2023

Postby SteveG48 » Wed Nov 08, 2023 12:52 pm

Code: Select all
 *-----------*
 |...|.69|..5|
 |6.8|.5.|7.4|
 |...|...|69.|
 |---+---+---|
 |.74|1..|...|
 |3..|...|..8|
 |...|..7|45.|
 |---+---+---|
 |.85|...|...|
 |7.2|.4.|8.9|
 |1..|29.|...|
 *-----------*
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: 11-8-2023

Postby P.O. » Wed Nov 08, 2023 6:49 pm

basics:
Hidden Text: Show
Code: Select all
( n3r2c4   n2r5c5   n5r9c7   n7r5c8   n8r9c6   n8r1c8   n9r7c1
  n9r2c2   n4r9c2   n4r7c8   n7r9c9   n9r4c7   n1r5c7 )

intersection:
((((1 0) (1 2 1) (1 2 3)) ((1 0) (1 3 1) (1 3 7))))

PAIR COL: ((4 5 5) (3 8)) ((6 5 5) (3 8)) 
(((3 5 2) (1 7 8)) ((4 6 5) (3 5 6)) ((6 4 5) (6 8 9)) ((7 5 8) (1 3 7)))

( n8r3c4 )

X-WING ROW: n1 (2 8) (6 8)
(((3 6 2) (1 2 4)) ((7 6 8) (1 3 6)))

Code: Select all
24    123   137   47    6     9     23    8     5             
6     9     8     3     5     12    7     12    4             
245   235   37    8     17    24    6     9     123           
258   7     4     1     38    56    9     236   236           
3     56    69    4569  2     456   1     7     8             
28    126   169   69    38    7     4     5     236           
9     8     5     67    17    36    23    4     1236           
7     36    2     56    4     1356  8     136   9             
1     4     36    2     9     8     5     36    7       

c1n5{r3 r4} => r7c4 <> 7
 r3c1=5 - r3n4{c1 c6} - r1c4{n4 n7}
 r4c1=5 - r4c6{n5 n6} - b6n6{r4c89 r6c9} - r7n6{c9 c4}
ste.
P.O.
 
Posts: 1731
Joined: 07 June 2021

Re: 11-8-2023

Postby RSW » Wed Nov 08, 2023 8:05 pm

Code: Select all
 +-------------+----------------+--------------+
 |d24  123 137 |e47    6   9    | 23 8    5    |
 | 6   9   8   | 3     5   12   | 7  12   4    |
 | 245 235 37  | 8     17  124  | 6  9    123  |
 +-------------+----------------+--------------+
 |d258 7   4   | 1     38 c56   | 9 b236 b236  |
 | 3   56  69  | 459-6 2   456  | 1  7    8    |
 |d28  126 169 | 9-6   38  7    | 4  5   a236  |
 +-------------+----------------+--------------+
 | 9   8   5   |f67    17  13-6 | 23 4    123-6|
 | 7   36  2   | 56    4   135-6| 8  136  9    |
 | 1   4   36  | 2     9   8    | 5  36   7    |
 +-------------+----------------+--------------+

(6)r6c9 = r4c89 - [(6=5)r4c6 - (5=284)r146c1 - (4=7)r1c4 - (7=6)r7c4] => -6r7c9 [-6r56c4 -6r78c6]; stte
(square brackets denote subchain and subchain eliminations.)

>>>Edited to clarify subchain eliminations.
RSW
 
Posts: 669
Joined: 01 December 2018
Location: Western Canada

Re: 11-8-2023

Postby Cenoman » Wed Nov 08, 2023 11:07 pm

Code: Select all
 +--------------------+---------------------+--------------------+
 |  24    123* a137#  |  47     6    9      | B23*  8     5      |
 |  6     9     8     |  3      5    12     |  7    12    4      |
 |  245  a235#  7-3   |  8      17   124    |  6    9    C123*   |
 +--------------------+---------------------+--------------------+
 |  258   7     4     |  1      38   56     |  9    236   236    |
 |  3     56    69    |  4569   2    456    |  1    7     8      |
 |  28    126   169   |  69     38   7      |  4    5     236    |
 +--------------------+---------------------+--------------------+
 |  9     8     5     |  67     17   136*   | A23#  4     1236*  |
 |  7    y36*   2     |  56     4    1356*  |  8   x136#  9      |
 |  1     4    z36    |  2      9    8      |  5    36    7      |
 +--------------------+---------------------+--------------------+

7-link oddagon (3)r178, c269, b3 (*), having four guardians (#)
(3)r1c3|r3c2
(3)r7c7 - r1c7 = r3c9
(3)r8c8 - r8c2 = r9c3
=> -3 r3c3; ste
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: 11-8-2023

Postby SteveG48 » Thu Nov 09, 2023 2:12 am

Nice one, RSW. I'm trying to figure out if there's another way to write it to clarify how the subchain works, but I'm not coming up with anything.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: 11-8-2023

Postby Cenoman » Thu Nov 09, 2023 6:07 pm

RSW wrote:(6)r6c9 = r4c89 - [(6=5)r4c6 - (5=284)r146c1 - (4=7)r1c4 - (7=6)r7c4] => -6r7c9 [-6r56c4 -6r78c6]; stte
(square brackets denote subchain and subchain eliminations.)

SteveG48 wrote: ...I'm trying to figure out if there's another way to write it to clarify how the subchain works...


I'm not in favour of using square brackets to delimit the endpoints of a subchain. Square brackets are already dedicated to delimit embedded chains and often used so in the forum. Using them for subchains would be much confusing.

In the present case, using '*' symbol solves the issue:
I'd write (6)r6c9 = r4c89 - (*6=5)r4c6 - (5=284)r146c1 - (4=7)r1c4 - (7=6)r7c4 => -6 r7c9, r56c4*, r78c6*; stte
or (6=7)r7c4 - (7=4)r1c4 - (4=285)r146c1 - (5=6*)r4c6 - r4c89 = (6)r6c9 => -6 r56c4*, r78c6*, r7c9; stte
(Other symbols, e.g. '^' '#' can be used in case of multiple subchains).

This not an invention of mines, but a very old practise of many players in the forum.
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: 11-8-2023

Postby SteveG48 » Thu Nov 09, 2023 11:36 pm

Very nice, Cenoman.

What I find really interesting is that the basic chain is a fully reversible AIC. It's valid when read in either direction. However, when you look at the reversed version posted by Cenoman, it's easy to see that if r7c4 is not a 6, then the starred 6 (r4r6) and the final 6 (r6c9) give the desired eliminations. If, on the other hand, if r7c4 is a 6, then that gives all the desired eliminations. If you look at the original (unreversed) chain, then the eliminations are clear if r6c9 is not at a 6, but if r6c9 is a 6, then you have to note that r4c6 must also be a 6 to see all the eliminations.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: 11-8-2023

Postby RSW » Fri Nov 10, 2023 8:27 pm

Thanks for the discussion. In the future, I'll use the notation suggested by Cenoman.

As for the order that I write the chain, I tend to write it in the same order that I discover it, without much regard for whether or not it would make more sense if it were reversed. I'll have to pay more attention to this when there are subchain eliminations.
RSW
 
Posts: 669
Joined: 01 December 2018
Location: Western Canada


Return to Puzzles