1-22-2024

Post puzzles for others to solve here.

1-22-2024

Postby SteveG48 » Mon Jan 22, 2024 2:51 pm

Code: Select all
 *-----------*
 |...|...|...|
 |...|8.1|794|
 |89.|45.|3..|
 |---+---+---|
 |4..|...|.7.|
 |.68|.7.|94.|
 |.2.|...|..8|
 |---+---+---|
 |..5|.83|.21|
 |941|5.6|...|
 |...|...|...|
 *-----------*
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: 1-22-2024

Postby jco » Mon Jan 22, 2024 4:21 pm

After basics
Code: Select all
.----------------------------------------------------------------------.
|aB(17)(3) 13     4      | 2367   369    279    | 256    8      256    |
|   235    35     236    | 8      36     1      | 7      9      4      |
|   8      9   dA(67)    | 4      5    E(2)7    | 3      1    F(2)-6   |
|------------------------+----------------------+----------------------|
|   4      135  d(39)    | 1236   1369   8      | 1256   7      2356   |
|aC(15)(3) 6      8      | 123    7    D(25)    | 9      4      235    |
|   1357   2    d(379)   | 136    13469  459    | 156    56     8      |
|------------------------+----------------------+----------------------|
|   6      7      5      | 9      8      3      | 4      2      1      |
|   9      4      1      | 5      2      6      | 8      3      7      |
| b(3)2    8    c(3)2    | 17     14     47     | 56     56     9      |
'----------------------------------------------------------------------'

Code: Select all
[(6=7)r3c3 - (7=1)r1c1 - (1=5)r5c1 - (5=2)r5c6 - (2)r3c6 = (2)r3c9]
   A           B           C           D          E         F 
||

(3)r15c1 - (3)r9c1 = (3)r9c3 - (3=976)r346c3
    a       b         c          d

=> -6 r3c9; ste
JCO
jco
 
Posts: 741
Joined: 09 June 2020

Re: 1-22-2024

Postby Cenoman » Mon Jan 22, 2024 4:50 pm

Code: Select all
 +---------------------+-----------------------+---------------------+
 |  137    13    4     |  2367   369     279   |  256    8    256    |
 |  235   e35    23-6  |  8     e36      1     |  7      9    4      |
 |  8      9   zC67    |  4      5      z27    |  3      1    26     |
 +---------------------+-----------------------+---------------------+
 |  4     d135   39    |  1236   1369    8     | c1256   7   c2356   |
 |  135    6     8     |  123    7      y25    |  9      4    235    |
 | A1357   2    B379   | a136   a13469  x459   |  1-56* b56*  8      |
 +---------------------+-----------------------+---------------------+
 |  6      7     5     |  9      8       3     |  4      2    1      |
 |  9      4     1     |  5      2       6     |  8      3    7      |
 |  23     8     23    |  17     14      47    |  56*    56*  9      |
 +---------------------+-----------------------+---------------------+

UR(56)r69c78 using externals:
(6*)r6c45 - (6=5)r6c8 - r4c79 = r4c2 - (5=36)r2c25
(5*-7)r6c1 = r6c3 - (7=6)r3c3
(5*)r6c6 - (5=2)r5c6 - (2=76)r3c36
=> -6 r2c3, -56* r6c7; ste
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: 1-22-2024

Postby P.O. » Mon Jan 22, 2024 6:52 pm

basics:
Hidden Text: Show
Code: Select all
( n7r7c2   n9r7c4   n2r8c5   n8r8c7   n3r8c8   n7r8c9   n6r7c1
  n4r7c7   n1r3c8   n4r1c3   n8r4c6   n8r9c2   n8r1c8   n9r9c9 )

intersections:
((((5 0) (1 7 3) (2 5 6)) ((5 0) (1 9 3) (2 5 6)))
 (((2 0) (2 1 1) (2 3 5)) ((2 0) (2 3 1) (2 3 6))))

Code: Select all
137    13     4      2367   369    279    256    8      256             
235    35     236    8      36     1      7      9      4               
8      9      67     4      5      27     3      1      26             
4      135    39     1236   1369   8      1256   7      2356           
135    6      8      123    7      25     9      4      235             
1357   2      379    136    13469  459    156    56     8               
6      7      5      9      8      3      4      2      1               
9      4      1      5      2      6      8      3      7               
23     8      23     17     14     47     56     56     9         

7r3c3 => b4p247 <> 5
 r3c3=7 - 13r1c12 - r2c2{n3 n5}
 r3c3=7 - r3c6{n7 n2} - r5c6{n2 n5}
 r3c3=7 - r6n7{c3 c1}
 
=> r3c3 <> 7
ste.
Last edited by P.O. on Mon Jan 22, 2024 9:16 pm, edited 2 times in total.
P.O.
 
Posts: 1731
Joined: 07 June 2021

Re: 1-22-2024

Postby Cenoman » Mon Jan 22, 2024 8:39 pm

jco wrote:[(6=7)r3c3 - (7=1)r1c1 - (1=5)r5c1 - (5=2)r5c6 - (2)r3c6 = (2)r3c9]
||
(3)r15c1 - (3)r9c1 = (3)r9c3 - (3=976)r346c3
=> -6 r3c9; ste

Very nice kraken AALS !

Switching to 7r3c3 as a target, you could even write it shorter:
[(7)r1c1 =* (5)r5c1 - (5=27)r35c6] = (13)r15c1 - r9c1 = r9c3 - (3=97)r46c3 => -7 r3c3; ste
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: 1-22-2024

Postby jco » Mon Jan 22, 2024 9:27 pm

Cenoman wrote:Switching to 7r3c3 as a target, you could even write it shorter:
[(7)r1c1 =* (5)r5c1 - (5=27)r35c6] = (13)r15c1 - r9c1 = r9c3 - (3=97)r46c3 => -7 r3c3; ste


Nice! Thanks for sharing!
JCO
jco
 
Posts: 741
Joined: 09 June 2020

Re: 1-22-2024

Postby eleven » Mon Jan 22, 2024 11:57 pm

Cenoman wrote:[(7)r1c1 =* (5)r5c1 - (5=27)r35c6] = (13)r15c1 - r9c1 = r9c3 - (3=97)r46c3 => -7 r3c3; ste

or
(6=725)r3c36,r5c6 - (7|5=132)r159c1 - (2=397)r946c3 => -7r3c3
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: 1-22-2024

Postby jco » Tue Jan 23, 2024 2:42 am

eleven wrote:or
(6=725)r3c36,r5c6 - (7|5=132)r159c1 - (2=397)r946c3 => -7r3c3

Also Nice, thanks!

I see both ways - in expanded form - (respectively), as:

. [(7='15)r15c1 - (5=27)r35c6] = (3)'r15c1 - r9c1 = r9c3 - (3=97)r46c3

. (7')r1c1 = [(6=72)r3c36 - (2=5)r5c6 - (5'=132)r159c1 - (2=397)r469c3]

First, I found the elimination of (6)r3c9 with a double kraken (too complex).
Looking at the cells and digits involved (used non-efficiently) after
a while I found the almost (expanded) xy-chain, but failed to think about
changing the target.

EDIT: first move would be the one I would have (changing the target), the second
move is the almost chain way to see eleven's move. Cenoman's move [kraken AALS]
not included in my comment since it was given already in almost chain form.
JCO
jco
 
Posts: 741
Joined: 09 June 2020


Return to Puzzles