Twins Construction Example
 Sudocue-top10000 \#05

Code: copy givens

...19.....1..........3.8.1.6...493...5.8.1...945...8.9.3.4.....2.....7.....59...
After some moves of HoDoKu Techniques such as:
Locked Candidates Type 1, Naked Triple, Naked Single, Empty Rectangle, Finned Swordfish.
And before a Sue de Coq arrives.

Copy Candidates:

Twins Construction Example

2 3 4 5 6 7 8	$\begin{array}{lll} & & \\ 4 & 5 \\ 7 & 8\end{array}$	${ }^{2} 8{ }^{6}$	1	9	2 $\begin{array}{r}2 \\ 7\end{array}$	[$\begin{array}{lll}2 & 3 \\ 4 & 5 & 6 \\ 7 & & \end{array}$	$4 \begin{array}{r}2 \\ 4\end{array}$	$\begin{array}{\|rr} \hline & 23 \\ 4 & 6 \\ 7 & \\ \hline \end{array}$
$\begin{array}{lll} & 2 & 3 \\ 4 & 5 & 6 \\ 7 & & \end{array}$	1	${ }^{2} 6$	$\begin{array}{lll} & 2 \\ 4 & & 6 \\ 7 & 8 & \end{array}$	${ }^{2} 6$	2 5 7 7	$\left\lvert\, \begin{array}{lll} & 2 & 3 \\ 4 & 5 & 6 \\ 7 & & \end{array}\right.$	9	$\begin{array}{lr}23 \\ 4 & 6 \\ 7 & \end{array}$
2 4 5 6 7	$\begin{array}{ll} 45 \\ 7 & 5 \\ \hline \end{array}$	9	$\begin{array}{lll}4 & 2 \\ 7 & 6\end{array}$	3	2 $\begin{array}{r}2 \\ 5 \\ 7\end{array}$	8	$4 \begin{aligned} & 2 \\ & 4 \\ & 4\end{aligned}$	1
$\begin{array}{ll} 1 & 2 \\ 7 & 8 \end{array}$	6	$\begin{aligned} & 12 \\ & 78 \end{aligned}$	7	$\begin{aligned} & 12 \\ & 7 \end{aligned}$	4	9	3	5
23	73	5	9	8	23 7 7	1	$4^{2} 6$	$\begin{array}{ll}4 & 2 \\ 7 & 6 \\ 7\end{array}$
123	9	4	5		$\begin{array}{lrl} 123 \\ & & 6 \\ 7 & & \\ \hline \end{array}$		8	
9	$\begin{array}{r}5 \\ 78 \\ \hline\end{array}$	3	$\begin{array}{\|l\|} \hline \\ \hline \end{array}$	4	$\begin{array}{ll}12 \\ 7 & 8\end{array}$	26	$\begin{array}{ll}12 \\ & 2 \\ & 5\end{array}$	${ }^{2} 6$
45	2		3	16	186	45	7	9
1 4 6 7 8			${ }^{2}{ }^{6} 6$	5	9	23 4	$1_{4}{ }^{2} 6$	$4 \begin{array}{r}23 \\ 6 \\ 8\end{array}$

U-Twins 1 from r9c8
Notice those three cells: r7c8 (red), r8c3 (blue) and r9c8 (blue).
If r9c8 is true, then r7c8 false and r8c3 true.
If r 7 c 8 is true, then r 8 c 3 and r 9 c 8 false.
Coloring:
Cycle 1: blue
Cycle 2: red
Starting by cycle 1 (blue):
From r9c8 (cycle 1)

Twins Construction Example
$=>$ r7c8 (cycle 2) strong link with r9c8
=> r7c6 (cycle 1) strong link with r7c8
$=>$ r8c3 (cycle 1) only cell in box 7 can be, because of r9c8
$=>$ r4c3 (cycle 2) only cell outside box 7 on column 3 can be a hidden strong link for r8c3
$=>\mathrm{r} 4 \mathrm{c} 5$ (cycle1) only cell outside box 4 on row 4 can be a hidden strong cell for r4c3
$=>$ r6c1 (cycle 1) only cell in box 4 can be, because of r4c5
$=>$ r9c1 (cycle 2) only cell outside box 4 on column 1 can be a hidden strong cell for r6c1.

Four cells r6c56 and r8c56, belonging to cycle 2 because of r4c5 (cycle 1) in box 5 and r7c6 (cycle 1) in box 8, make UTwins.

This U-Twins belongs to cycle 2, so all cells of cycle 2 contain digit 1.

$$
\text { Cycle } 2 \text { (red) = } 1
$$

Conclusion: $\mathrm{r} 4 \mathrm{c} 3=1 ; \mathrm{r} 7 \mathrm{c} 8=1$ and $\mathrm{r} 9 \mathrm{c} 1=1$.
After some basic moves, I come to the following grid.

Copy Candidates:

$\begin{array}{rrr} & 3 \\ 4 & 5\end{array}$	$45^{4} \begin{array}{r}3 \\ 8\end{array}$	2 8	1	9	2 5		$4 \begin{aligned} & 2 \\ & 4\end{aligned}$	$\begin{array}{lr}23 \\ 4 & 6 \\ 7 & \end{array}$
$\begin{array}{rrr} & 3 \\ 4 & 5\end{array}$	1	2 7	$4^{4} 8$	$7 \begin{array}{r}2 \\ 7\end{array}$	56 8	3 4	9	7 4
4 5 6 7	$\begin{array}{l\|l} 4 & 5 \\ 7 & \\ \hline \end{array}$	9	4 2 7 6	3	$7 \begin{array}{r}2 \\ 5\end{array}$	8	$\begin{array}{r}2 \\ 4 \\ \hline\end{array}$	1
8	6	1	72 7	72	4	9	3	5
23		5	9	8	3	1	$4^{2} 6$	$4^{4} \begin{aligned} & 2 \\ & 7\end{aligned}{ }^{2}$
23	9	4	5	16	1 3 6		8	2 7
9	5 78	3	\square	4	\square	2 L	1	$2^{2} 6$
45	2	8^{6}	3	16		45	7	9
1	$\begin{array}{ll} 4 & \\ 7 & 8 \end{array}$	78^{6}	${ }^{2} 86$	5	9	23 4 6	$4^{2} 6$	$4 \begin{array}{r}23 \\ 4 \\ 8\end{array}$

Starting by cycle 1 (blue)
From r1c2 (cycle 1)
=> r7c2 (cycle 2) only cell outside box 1 in column 2
=> r8c1 (cycle 1) strong link with r7c2
$=>$ r8c7 (cycle 2) strong link with r8c1
$=>$ r7c7 (cycle 1) strong link with r8c7
$=>$ r3c8 (cycle 1) only cell in box 3 can be, because of r1c2

Twins Construction Example
$=>$ r1c8 (cycle 2) strong link with r3c8
$=>$ r2c6 (cycle 1) only cell in box 2 can be, because of r1c2 and r3c8
$=>$ r3c6 (cycle 2) only cell in box 2 can be, because of r1c8 and r2c6
$=>$ r2c1 (cycle 2) only cell in box 1 can be, because of r1c8 and r3c6.

3 456	$\begin{array}{r} 1 \\ 45 \\ 4 \\ 8 \end{array}$	2 8	1	9	2 5	$\begin{array}{rrr}2 & 3 \\ 4 & & 6 \\ 7 & & \end{array}$	$4 \begin{array}{r}2 \\ 4\end{array}$	23 4 6 7
4 4	1		${ }^{4} \begin{array}{rr} 6 \\ 8 \end{array}$		56 8	3 4	9	 4 4
4 5 6 7	4 5 7	9	$\begin{array}{lll} & 2 & \\ 4 & & 6 \\ 7 & & \end{array}$	3	2 5 7	8	$4 \begin{array}{r}2 \\ 45\end{array}$	1
8	6	1	$\begin{array}{r} 2 \\ 7 \end{array}$	$\begin{array}{r} 2 \\ 7 \end{array}$	4	9	3	5
$\begin{array}{r} 23 \\ 7 \end{array}$	$7{ }^{3}$	5	9	8	3 6	1	$4^{2} 6$	$\begin{array}{ll} 4^{2} & 6 \\ 7 & \\ \end{array}$
$\begin{array}{r} 23 \\ 7 \end{array}$	9	4	5	16	$1 \begin{aligned} & 3 \\ & \\ & \end{aligned}$	$\begin{array}{rr} 2 \\ 7 & 6 \\ \hline \end{array}$	8	$\begin{aligned} & 2 \\ & 6 \\ & 7 \\ & \hline \end{aligned}$
9	$\begin{array}{r} 5 \\ 78 \end{array}$	3	$\begin{array}{ll} \hline & 2 \\ & \\ 7 & 8 \\ \hline \end{array}$	4	$\begin{aligned} & 1 \\ & \hline \end{aligned}{ }^{2} 6$	26	1	$\begin{aligned} & 2 \\ & 8 \\ & 8 \end{aligned}$
45	2	8^{6}	3	1 6	$\begin{array}{ll} 1 & \\ & 6 \\ & 6 \end{array}$	45	7	9
1	$\begin{array}{ll} 4 & \\ 7 & 8 \end{array}$	78^{6}	$\begin{array}{\|ll} \hline & 2 \\ 7 & 6 \\ 7 & 8 \end{array}$	5	9	23 $4 \quad 6$	$4^{2} 6$	$\begin{array}{rr} 2 & 3 \\ 4 & 6 \\ 4 & 8 \\ \hline \end{array}$

Starting from r3c2 (cycle 1) (blue), I can finish Twins in every boxes. Twins do not change their cells, even though two cells change from cycle to cycle and one cell changes because the

Twins Construction Example

starting cell changes of course. See image above.

Note:Twins change only in boxes 1 and 2 .

This is Locked - Twins in column 2, cells r13c2, so cell r7c2 (only cell outside box 1 on column 2) does not contain candidate.

Therefore $\mathrm{r} 8 \mathrm{c} 1=5=>\mathrm{r} 7 \mathrm{c} 7=5=>\mathrm{r} 2 \mathrm{c} 6=5$, because r1c28 and r3c28 become X-Wing.

Finally, the game needs simple techniques such as locked candidates and single digit to solve.

The game is solved.

