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Abstract: Let L be a latin square of indeterminates. We explore the determinant and perma-
nent of L and show that a number of properties of L can be recovered from the polynomials
det(L) and per(L). For example, it is possible to tell how many transversals L has from per(L),
and the number of 2 × 2 latin subsquares in L can be determined from both det(L) and per(L).
More generally, we can diagnose from det(L) or per(L) the lengths of all symbol cycles. These
cycle lengths provide a formula for the coefficient of each monomial in det(L) and per(L) that
involves only two different indeterminates. Latin squares A and B are trisotopic if B can be
obtained from A by permuting rows, permuting columns, permuting symbols, and/or transpos-
ing. We show that nontrisotopic latin squares with equal permanents and equal determinants
exist for all orders n ≥ 9 that are divisible by 3. We also show that the permanent, together with
knowledge of the identity element, distinguishes Cayley tables of finite groups from each other.
A similar result for determinants was already known. © 2014 Wiley Periodicals, Inc. J. Combin.
Designs 24: 132–148, 2016
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1. INTRODUCTION

Let [n] = {0, 1, 2, . . . , n− 1} and let Xn = {xi : i ∈ [n]} be a set of n commuting in-
determinates. A latin square, L = [aij ], of order n is an n× n matrix of symbols in
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PERMANENTS AND DETERMINANTS OF LATIN SQUARES 133

which each symbol occurs exactly once in each row and exactly once in each column.
In this paper, we exclusively consider latin squares with symbols from Xn, that is, n× n

arrays in which each row and column is a permutation of Xn. Taking the determinant
or permanent of such a latin square yields a homogeneous multivariate polynomial of
degree n. Our aim is to investigate which latin square properties can be determined solely
from these polynomials. Examples of such properties might be the number of transver-
sals (selections of n different symbols from different rows and columns), or the number
of intercalates (subsquares of order 2). Determination of such properties may provide a
broad stratification of latin squares to be used in searches or classifications. Additional
motivation comes from [1] and [2], where permanents and determinants of latin squares
of indeterminates have been used to prove nontrivial general properties of latin squares.

Let Sn be the set of permutations of [n]. The composition of permutations ψ, φ ∈ Sn,
written ψφ, is taken to be the permutation x �→ ψφ(x) = ψ(φ(x)). For a latin square
L = [aij ], of order n, the permanent of L is defined by

per(L) =
∑
μ∈Sn

a0μ(0)a1μ(1) · · · an−1μ(n−1)

and the determinant of L is defined by

det(L) =
∑
μ∈Sn

ε(μ)a0μ(0)a1μ(1) · · · an−1μ(n−1),

where

ε(μ) =
{

1, if μ is an even permutation,
−1, if μ is an odd permutation.

When considering polynomials we will always assume that like terms have been
collected. Both per(L) and det(L) can be thought of as a sum of monomials where
each monomial is the product of indeterminates, with an integer coefficient. A bivariate
monomial is a monomial of the form zxue x

v
f , where u+ v = n and z is an integer. To

simplify the language in proofs, we allow u, v or z to equal 0. In §5 we identify the
coefficient of every bivariate monomial in per(L) and det(L).

Two polynomialsF andG in the indeterminatesXn are said to be similar if there exists a
permutation σ ∈ Sn such thatF (x0, . . . , xn−1) = ±G(xσ (0), . . . , xσ (n−1)). In other words,
F andG are similar if one can be transformed into the other by relabeling variables and/or
by multiplying by −1. The polynomials F and G are dissimilar if they are not similar.
Similarity of determinants (or likewise permanents) induces an equivalence relation on
latin squares. One aim of this paper is to better understand the equivalence classes under
this relation.

Two latin squares L and M are isotopic if one can be obtained from the other by
permuting rows, permuting columns, and/or permuting symbols. We say that L and
M are trisotopic if L is isotopic to M or isotopic to the transpose MT of M . The
set of latin squares that are trisotopic to L is the trisotopy class of L. It is immediate
from the definitions that two latin squares in the same trisotopy class must have similar
determinants and similar permanents. More interestingly, in §6 we will see examples
of general families of latin squares from different trisotopy classes that have similar
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134 DONOVAN, JOHNSON, AND WANLESS

determinants and similar permanents. This will allow us to answer several questions
posed by Ford and Johnson [9], who investigated latin squares with similar determinants.

For latin squares that are isotopic to the Cayley table of a finite group, Formanek and
Sibley [10] and Mansfield [15], showed that the determinant determines the group. We
show a similar result for permanents in §3.

In §4, we provide details of trisotopy class invariants which we used to verify that two
latin squares of order at most eight have similar permanents if and only if they belong to
the same trisotopy class. However, in §6 we show that the same statement fails for order 9.
The ideas behind this paper go back to the foundation of group representation theory.
For full details see [ 6, 11, 14], but the brief summary is this: Frobenius, after prompting
by Dedekind, invented group characters en route to describing the factorization of the
group determinant. A group matrix is similar to a block diagonal matrix in which each
block is indecomposable and corresponds to an irreducible representation. The character
corresponding to a block is essentially the first nonzero coefficient of the characteristic
polynomial of the block. Modern work has examined further information contained in
the group determinant. However, even in the group case, only a small proportion of this
information has been exploited thus far. This paper investigates how generalizing the
ideas of Frobenius et al. leads to invariants that tie in with combinatorial and algebraic
properties of quasigroups. We hope that this lays a theoretical foundation for further
results along the lines of those proved in [1] and [2].

2. NOTATION AND TERMINOLOGY

In this section, we collect some notation and terminology that will be used throughout
the paper.

It is assumed throughout thatL denotes a latin square of order n. The rows and columns
of L will be indexed by [n]. By a diagonal of L, we will mean any set of n cells from
different rows and different columns of L. The permanent and determinant are both
defined in terms of the products of entries on diagonals.

For each latin square L = [aij ], of order n, and each k ∈ [n] we define θk ∈ Sn by
θk(i) = j if aij = xk . Now, for each ordered pair (e, f ) ∈ [n] × [n] define θe,f ∈ Sn by
θe,f = θf θ

−1
e . For i ∈ [n], we find that θe,f (i) is the index of the column that contains

xf in the same row in which xe occurs in column i. We say that θe,f is the symbol
permutation corresponding to the pair (e, f ). As θe,f is a derangement it can be written
as a product of disjoint cycles,

θe,f = θ
(1)
e,f θ

(2)
e,f θ

(3)
e,f · · · θ (q)

e,f , (1)

each of length at least 2. Let the length of the cycle θ (i)
e,f be denoted by �i , so that we

have �1 + �2 + . . .+ �q = n. Corresponding to each θ (i)
e,f is a symbol cycle consisting of

the 2�i occurrences of the symbols xe, xf in the columns permuted by θ (i)
e,f . Following the

convention adopted in [19] and used in many papers since, we say that the length of the
symbol cycle corresponding to θ (i)

e,f is �i . The lengths of the cycles θ (1)
e,f , θ

(2)
e,f , . . . , θ

(q)
e,f can

be used to define a sequence �e,f = (�1, �2, . . . , �q) where it is assumed that �j ≤ �j+1,
for all j ∈ [q − 1].
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Similarly, for each r ∈ [n] we may define a permutation ρr = ρr (L) of [n] by ρr (i) = j

if and only if ari = xj . We then define, for each r, s ∈ [n], a row permutation ρr,s(L) of
[n] by ρr,s = ρsρ

−1
r . Again, for any two rows the corresponding row permutation can be

thought of as a composition of disjoint cycles that correspond to row cycles. Similarly,
for any two columns we may define a column permutation on the set [n], which is a
composition of disjoint cycles that correspond to column cycles. Note that if two latin
squares, A and B, are isotopic then there is a correspondence between row permutations
(column permutations) of A and the row permutations (column permutations) of B. For
a detailed study of the row, column, and symbol cycles in small latin squares, see [20].

We can associate L = [aij ] with a quasigroup ([n], ◦) in which i ◦ j = k ⇔ aij = xk .
With this interpretation, θk(L) is the permutation k/j �→ j for all j ∈ [n], where /
denotes right division in the quasigroup. Also, ρr (L) is the left translation by element r
(i.e. multiplication on the left by r). Similarly ρr (LT ) is right translation by r . The group
generated by {ρr (L) : r ∈ [n]} ∪ {ρr (LT ) : r ∈ [n]} is known as the multiplication group
of L, or full mapping group of L, and denoted Mlt(L).

As mentioned in the introduction, isotopism involves permuting the rows, permuting
the columns and permuting the symbols of a latin square. Hence, isotopism can be viewed
as an action of Sn × Sn × Sn on latin squares of order n. The stabilizer of a latin square
under this action is its autotopism group. See [17] for a detailed study of autotopisms.
There are two other well-known group actions on latin squares. The group S3 takes a
latin square to 6 conjugate latin squares. Combining this action with isotopism gives an
action of the wreath product Sn 
 S3 on latin squares. The stabilizer of a latin square L
under this action is called the autoparatopism group of L, which we denote Par(L).

3. CAYLEY TABLES OF GROUPS

Throughout this section, we interpret a Cayley table for any group to be a latin square
of indeterminates. We prove that the permanent of a Cayley table determines the group,
provided the identity element is known.

Let G be a group of order n ≥ 3, and let ε be the identity element of G. The group
matrix MG is the latin square of the operation of right division; it has xgh−1 in cell (g, h)
for each g, h ∈ G. By permuting columns, it is obvious that MG is isotopic to the usual
Cayley table of G, which has xgh in cell (g, h). Consider the coefficient φG of xn−3

ε in
per(MG). Observe that φG is a homogeneous polynomial of degree 3. In the following
discussion, it is not assumed that g, h, k are distinct.

Lemma 3.1. Suppose g, h, k are nonidentity elements of G. The monomial xgxhxk
appears in φG if and only if ghk = ε and/or gkh = ε. The monomial xgxhxε appears in
φG if and only if h = g−1.

Proof. Suppose xgxhxk appears as a monomial in φG, with g, h, k �= ε. After applying
the same suitably chosen permutation to both the rows and columns, the matrix MG may
be partitioned as

(
A B

C D

)
,

Journal of Combinatorial Designs DOI 10.1002/jcd



136 DONOVAN, JOHNSON, AND WANLESS

where A is of dimensions (n− 3) × (n− 3) and

D =
⎛
⎝ xε xα xλ
xμ xε xβ
xγ xν xε

⎞
⎠ ,

where {α, β, γ } = {g, h, k} as multisets and λ,μ, ν ∈ G (we may ignore the possibility
that {λ,μ, ν} = {g, h, k} since in that case swapping the last pair of rows and swapping
the last pair of columns puts D into the claimed form).

It follows that each monomial in

xn−3
ε per(D) = xn−3

ε

(
x3
ε + xε(xαxμ + xβxν + xλxγ ) + xαxβxγ + xλxμxν

)
, (2)

appears in per(MG) with a nonzero coefficient (not less than its coefficient in (2)).
Suppose with the ordering indicated, that the last three rows and columns of MG

are indexed by p, q, r . It follows that pq−1 = α, qr−1 = β, and rp−1 = γ , and that
pr−1 = λ, qp−1 = μ, rq−1 = ν. This implies that either ghk = ε or gkh = ε.

Now suppose that ghk = ε. Consider the partition of MG given above where the
last three rows and columns of MG are indexed, for any z ∈ G, by p = z, q = g−1z,

and r = h−1g−1z. It follows that pq−1 = g, qr−1 = h, and rp−1 = k and xgxhxk is a
monomial in φG.

It remains to consider monomials of the form xgxhxε. Suppose that the last three rows
of MG are indexed by p, q, r . If xgxhxε occurs in per(D) then the pair {g, h} must be
equal to one of the pairs {α,μ}, {β, ν}, or {λ, γ }. Now α = pq−1 = (qp−1)−1 = μ−1,
and similarly β = ν−1 and λ = γ−1, so it follows that g−1 = h.

Conversely, suppose that g = h−1. If z is any element ofG then if q = z and r = g−1z

it follows that qr−1 = g and rq−1 = h, and hence xgxhxε appears as a monomial in φG.
The Lemma is proved. �

From Lemma 3.1, per(MG) contains the information to determine all triples (g, h, k)
such that gh = k−1 or hg = k−1. Also, per(MG) contains the information to determine
k−1 from k. It follows that for each pair of elements (g, h) the set {gh, hg} is known.

The following Lemma has appeared in several places (see, for example, [16]). Recall
that a bijection f between two groups is an anti-isomorphism if f (gh) = f (h)f (g) for
all g, h.

Lemma 3.2. If G,H are finite groups and there is a bijection f : G → H such that
for all g, h ∈ G we have that f (gh) is either f (g)f (h) or f (h)f (g), then f is either an
isomorphism or an anti-isomorphism.

We can now prove the main result for this section.

Theorem 3.3. Let LG and LH be Cayley tables for two finite groups G and H with
respective identity elements εG and εH . If per(LG) is similar to per(LH ) via a bijection
that maps εG to εH , then G is isomorphic to H .

Proof. Since the Cayley table of a group can be obtained by permuting the columns
of the group matrix for the group, we may assume that per(MG) is similar to per(MH )
via a bijection f such that f (εG) = εH . As before, let φG (resp. φH ) be the coefficient
of xn−3

εG
in per(MG) (resp. xn−3

εH
in per(MH )). By Lemma 3.1, h = g−1 in G if and only
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if xgxhxεG appears in φG, which happens if and only if xf (g)xf (h)xεH occurs in φH . Thus
f (g−1) = f (g)−1.

Also, a monomial xgxhxk occurs in φG if and only if the monomial axf (g)xf (h)xf (k)

occurs in φH . Now suppose that ghk = εG, i.e. gh = k−1. Then by Lemma 3.1 the mono-
mial xgxhxk occurs in φG and thus xf (g)xf (h)xf (k) occurs in φH . Therefore, again using
Lemma 1, f (g)f (h)f (k) = εH and/or f (g)f (k)f (h) = εH . In the first case f (g)f (h) =
f (k)−1 = f (k−1) = f (gh). In the second case f (h)f (g) = f (k)−1 = f (k−1) = f (gh).
Thus f satisfies the conditions of Lemma 2 and is either an isomorphism or an anti-
isomorphism. Since anti-isomorphic groups are isomorphic, the theorem follows. �

It is quite plausible that Theorem 3.3 is still true without the hypothesis about the
identity elements. However, note that the identity element of a group cannot be deduced
solely from the permanent of a Cayley table for the group. To see this, define an operation
⊕ on [n] by x ⊕ y ≡ x + y − 1 mod n. Compared to the usual addition mod n, this new
operation gives a group with the same permanent but a different identity element.

4. SMALL ORDER DATA

In this section, we discuss how well the determinant and permanent distinguish trisotopy
classes of latin squares of small order. First we consider how many different monomials
are contained in these polynomials. We assume, of course, that like terms have been
collected and that monomials are counted only if they have a nonzero coefficient.

Theorem 4.1. If L is a latin square of order n > 2, then per(L) and det(L) each
contain no more than

(
2n− 1
n

)
− n(n− 1) (3)

different monomials.

Proof. Chang [5] showed that a diagonal of L can contain any combination of sym-
bols, with the exception that it is impossible to have n− 1 occurrences of one symbol
and 1 occurrence of some different symbol. Suppose that on a given diagonal there are
ui occurrences of symbol i for each i ∈ [n]. The number of choices for n nonnegative
integers u1, . . . , un with u1 + u2 + · · · + un = n is

(
2n−1
n

)
(this is a standard combinato-

rial problem, equivalent to the number of ways to place n unlabeled balls in n labeled
boxes). However, by Chang’s Theorem we cannot have ui = n− 1 and uj = 1 for i �= j .
Assuming n > 2, there are n(n− 1) ways to choose the pair (i, j ) in this scenario. The
result follows. �

As a consequence, we see that per(L) must have some monomials with coefficients
that are super-exponentially large. The coefficients sum to n!, so the largest must be at
least

n!(2n−1
n

) = n!2(n− 1)!

(2n− 1)!
= 2

√
2π

( n
4e

)n
(n+O(1))

as n → ∞, by Stirling’s formula.
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138 DONOVAN, JOHNSON, AND WANLESS

TABLE I. Range of the number of monomials in determinants and permanents of latin
squares of small order. Only partial enumerations were performed for the asterisked
orders.

Fewest Fewest Mean Mean Most Most Bound
Order in det in per in det in per in det in per from (3)

2 2 2 2 2 2 2 n/a
3 4 4 4 4 4 4 4
4 10 10 11 11 11 11 23
5 26 26 54 54 82 82 106
6 68 80 226 241 367 397 432
7 246 246 1,224 1,351 1,310 1,436 1,674
8 810 810 5,174 5,759 5,491 6,054 6,379
9∗ 2,704 2,704 21,662 23,604 24,238
10∗ 7,492 9,252 86,188 91,273 92,288
11∗ 32,066 32,066 338,916 351,038 352,606

In Table I, we give data on the number of monomials in det(L) and per(L) as L ranges
across all latin squares of order n, for each n ≤ 8. We show the fewest number, average
number and maximum number of monomials seen in each polynomial. For 9 ≤ n ≤ 11
we show similar data, except that our enumeration was only partial. To be precise, we
checked the latin squares with large autotopism groups. This includes all Cayley tables
of groups, which tended to have far fewer monomials than any other latin squares. In
particular, the cyclic group had the fewest monomials in every case that we surveyed. It
remains possible that there exists a latin square with fewer monomials than the fewest
listed in Table 1, or with more monomials than the most given in the table for 9 ≤ n ≤ 11.
We did not calculate averages for these partial enumerations. Table 1 also lists the bound
obtained from (3). It is achieved for n = 3 but not for larger n, although the data hints
that it might be asymptotically tight, at least for the permanent.

The following latin squares achieve the maximum number of monomials in per(L) for
latin squares L of order 7 and 8, respectively.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7

x2 x1 x4 x3 x6 x7 x5

x3 x4 x5 x6 x7 x1 x2

x4 x5 x1 x7 x3 x2 x6

x5 x7 x6 x1 x2 x4 x3

x6 x3 x7 x2 x1 x5 x4

x7 x6 x2 x5 x4 x3 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x3 x6 x2 x4 x7 x8 x5

x7 x1 x4 x8 x2 x5 x6 x3

x5 x8 x1 x3 x6 x2 x7 x4

x8 x7 x2 x1 x5 x4 x3 x6

x2 x6 x8 x5 x1 x3 x4 x7

x6 x2 x7 x4 x3 x1 x5 x8

x3 x4 x5 x7 x8 x6 x1 x2

x4 x5 x3 x6 x7 x8 x2 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

They have autotopism groups of order 1 and 24, respectively. Unusually for latin
squares of order 8, the one given above has no transversals. Hence, its permanent and
determinant contain no monomial of the form zx1x2x3x4x5x6x7x8. Its determinant con-
tains 5,214 monomials, some way short of the maximum achieved by latin squares of
order 8. Clearly, there is some cancellation occurring in the determinant for this square.
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In contrast, we see in Table 1 that the fewest monomials in det(L) often matches the
fewest monomials in per(L), indicating a lack of cancellation in these cases.

Next, we move on to the main topic of this section, which is the question of how well
det and per distinguish trisotopy classes of small order. We start with the determinant. For
latin squares of order 1,2,3, all latin squares belong to the same trisotopy class. Hence in
each case all squares of the same order have similar determinants. For orders 4 and 5, re-
spectively, there are two trisotopy classes and in each case nontrisotopic latin squares have
dissimilar determinants. For order 6, there are 17 trisotopy classes and for order 7, there are
324 trisotopy classes and again, nontrisotopic latin squares have dissimilar determinants.

For order 8, Ford and Johnson [9] found 842,227 trisotopy classes and all but 37 of these
are a similarity class on their own, with respect to determinants. Further, the 37 exceptional
trisotopy classes partitioned into 12 equivalence classes, say Ci , for i = 1, . . . , 12, where
latin squares in the same equivalence class have similar determinants. Moreover in each
of these 37 exceptional trisotopy classes the latin squares can be written as the union
of four disjoint subsquares of order 4. For example, they showed that the following two
latin squares have similar determinants, even though they are not trisotopic:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 x1 x2 x3 x4 x5 x6 x7

x1 x0 x3 x2 x5 x4 x7 x6

x2 x3 x0 x1 x6 x7 x4 x5

x3 x2 x1 x0 x7 x6 x5 x4

x4 x5 x7 x6 x0 x3 x2 x1

x5 x4 x6 x7 x1 x2 x3 x0

x7 x6 x4 x5 x3 x0 x1 x2

x6 x7 x5 x4 x2 x1 x0 x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 x1 x2 x3 x4 x5 x6 x7

x1 x0 x3 x2 x5 x4 x7 x6

x2 x3 x0 x1 x6 x7 x4 x5

x3 x2 x1 x0 x7 x6 x5 x4

x4 x5 x7 x6 x0 x3 x2 x1

x5 x4 x6 x7 x2 x1 x0 x3

x7 x6 x4 x5 x1 x2 x3 x0

x6 x7 x5 x4 x3 x0 x1 x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(4)

We next investigate the situation for permanents of small latin squares. Consider a set
of trisotopy class representatives of orders up to eight. It is not a simple matter to calculate
the permanent of each of these latin squares and compare them pairwise for similarity
(each polynomial typically has thousands of monomials, as discussed at the start of the
section). Instead we computed some simpler trisotopy class invariants that would be
equal for any two squares with equal permanents. The two invariants we computed for
all latin squares of order up to eight are as follows.

Invariant #1: For each of the n! diagonals of a latin square L, count the occurrences
of each symbol on the diagonal. Sort these counts to produce a partition π of n. For every
partition π of n, count the number dπ of diagonals of L that realize π . The vector (dπ )
indexed by the partitions π is our first invariant.

Invariant #2: For each symbol s in the latin square L, find the lengths of all symbol
cycles involving s. Suppose there are vi cycles of length i, for 2 ≤ i ≤ n. Since vn−1 = 0,
and vn is determined by the values of vi for i ≤ n− 2 we define v̄s = (v2, v3, . . . , vn−2).
We then sort the list of vectors v̄1, v̄2, . . . , v̄n lexicographically, and this becomes our
second invariant.

We will also sometimes refer to the following invariant.
Invariant #3: Consider a multivariate polynomial such as det(L) or per(L). For each i,

let vi denote the number of monomials that contain positive powers of exactly i distinct
indeterminates. The vector (v1, . . . , vn) is our third invariant. Note that before calculating
vi we collect all like terms.
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140 DONOVAN, JOHNSON, AND WANLESS

Note that the number of transversals corresponds to the count dπ where π is the
partition 1 + 1 + · · · + 1. The number of transversals is not a determinant invariant (and
hence neither is Invariant #1). For example, consider the two latin squares in (4). They
have similar determinants, but the right hand square has 320 transversals whereas the
square on the left has none.

We discovered that any two trisotopy classes of order at most seven can be distinguished
by at least one of Invariants #1 or #2, and thus they all have dissimilar permanents. For
order 8 these two invariants do not completely distinguish trisotopy classes. However,
there are only two sets of three trisotopy classes and 31 pairs that cannot be distinguished
by either invariant. Happily, these numbers are sufficiently small that it was practical to
compute the permanents of each of the trisotopy class representatives and compare them.
Invariant #3 could separate some but not all of the examples. However, an approach that
invariably allowed us to distinguish a target pair (A,B) of trisotopy class representatives
was to choose a set I of eight distinct integers. We then evaluated per(A) by substituting I
for the values of the variables x0, . . . , x7 and evaluated per(B) at all possible permutations
of I . If the value for per(B) never matched the value first computed for per(A) then we
knew per(A) and per(B) were dissimilar. It turns out that this happened in every case for
the first I that we chose. We conclude that:

Theorem 4.2. Two latin squares of order at most eight have the same permanent if
and only if they belong to the same trisotopy class.

The same is not true for order 9 as will be shown later, by Corollary 6.3.

5. BIVARIATE MONOMIALS

For any pair (e, f ) ∈ [n] × [n], the permanent per(L) and determinant det(L) both contain
bivariate monomials of the form zxue x

v
f where u+ v = n and z is a nonzero integer. Such

bivariate monomials always exist, for instance when u = 0 and v = n. The main aim
of this section is to characterize the bivariate monomials that occur, and to determine
the coefficient z in each case. The characterization will be in terms of the lengths
of symbol cycles. We first use these cycle lengths to define a profile for each pair
of elements (e, f ) ∈ [n] × [n]. We write SL(e, f ) = (�t11 , . . . , �

tp
p ) where �j < �j+1 for

1 ≤ j < p, and ti records the number of times �i occurs in the sequence �e,f . Clearly,
t1�1 + . . .+ tp�p = n. We call SL(e, f ) the profile of pair (e, f ) with respect to the latin
square L. It is worth recording that SL(e, f ) = SL(f, e).

Theorem 5.1. Let e, f ∈ [n] and let SL(e, f ) = (�t11 , . . . , �
tp
p ) be the profile of pair

(e, f ) with respect to the latin square L. If 0 ≤ u ≤ n, then per(L) contains the
monomial zxue x

n−u
f , where

z =
∑
c1,...,cp

(
t1

c1

)(
t2

c2

)
. . .

(
tp

cp

)
(5)

and the sum is over nonnegative integers ci satisfying u = c1�1 + c2�2 + . . .+ cp�p.

Proof. Consider the symbol cycles corresponding to (1), the decomposition of θe,f . If
we choose any subset, say U , of these symbol cycles we can find a diagonal of L by
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selecting the cells corresponding to every occurrence of xe in the cycles in U and every
occurrence of xf in the cycles not in U . This diagonal will contribute to the coefficient of
xue x

n−u
f , where u is the sum of the lengths of the cycles in U . The sum in (5) counts the

number of such choices that contribute to the coefficient of xue x
n−u
f given that, for each

i, we choose some number ci of the ti cycles of length �i to form the set U .
It remains to show that these are the only contributions to the coefficient of xue x

n−u
f .

Consider any diagonal D that contributes to this coefficient.
Let � be a symbol cycle on the symbols xe and xf . SupposeD includes an occurrence

of xe in � and start at this entry. Now move to the xf in the same row (which cannot
be in D), and from there move to the xe in the same column (which must be in D).
Repeating this process, we find that D must include every xe and no xf from �.

Hence, within each symbol cycle on the symbols xe and xf , we see thatD can include
only one of the symbols. It follows that D was one of the contributions we had already
counted, and we are done. �

As an example of Theorem 5.1, consider when u = n. In that case, the only nonzero
contribution to (5) comes from taking ci = ti for 1 ≤ i ≤ p, which shows that xne x

0
f (that

is, xne ) occurs with a coefficient of 1 in per(L). It is important to stress that (5) may
evaluate to 0. For example, if u = 1 or u = n− 1 there is no way to partition u into cycle
lengths from θe,f , since the smallest possible cycle length is 2. Hence the coefficients of
x1
e x

n−1
f and xn−1

e x1
f are both zero. This confirms what we saw in Theorem 4.1.

Theorem 5.2. Let e, f ∈ [n] and let SL(e, f ) = (�t11 , . . . , �
tp
p ) be the profile of pair

(e, f ) with respect to the latin square L. If 0 ≤ u ≤ n, then det(L) contains the
monomial zxue x

n−u
f , where

z = ε(θf )
∑
c1,...,cp

(−1)w
(
t1

c1

)(
t2

c2

)
. . .

(
tp

cp

)
, (6)

the sum is over nonnegative integers ci satisfying u = c1�1 + c2�2 + . . .+ cp�p, and
w = ∑

ci where the sum is over all i for which �i is even.

Proof. The proof is the same as for the previous theorem, but we need to keep track
of the parity of the permutation that corresponds to each diagonal that contributes to the
coefficient. Start with the permutation θf , which has parity ε(θf ). We then change it by
choosing xe rather than xf from ci symbol cycles of length �i , for 1 ≤ i ≤ p. Each cycle
of even length that we select changes the parity, while cycles of odd length make no
difference. The result follows. �

The coefficient (6) is bounded in absolute value by (5). Hence, (6) will evaluate to
zero whenever (5) does. In the case of the determinant it is also possible for a coefficient
to vanish through cancellation. As a concrete example, consider n = 8, u = 4, and
SL(e, f ) = (22, 41). There are only two nonzero terms in the sum (6), corresponding to
(c1, c2) being (2, 0) and (0, 1), respectively. The two terms are +1 and −1, so the result
is that the coefficient of x4

e x
4
f in this case would be zero.

Define the profile of a latin square L to be the multiset

SL = {SL(e, f ) : 1 ≤ e < f ≤ n}.
We next show that the profile of L is determined by per(L), and also by det(L).
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Theorem 5.3. Given two latin squares L and M of order n, if per(L) is similar to
per(M) then SL = SM . Likewise, if det(L) is similar to det(M) then SL = SM .

Proof. Suppose that per(L) is similar to per(M). Since SM is isotopy invariant we may,
without loss of generality, permute the symbols of M so that per(L) = per(M).

Suppose that SL �= SM . Then there exist e, f ∈ [n] for which SL(e, f ) �= SM (e, f ).
Let j be the smallest value for which L andM have a different number of j -cycles in the
symbol permutation for symbols xe and xf . Applying Theorem 5.1 in the case u = j we
find that the coefficient of xue x

n−u
f differs between per(L) and per(M) because precisely

one term in (5) is different (namely the term where one ci is one and all others are zero).
This contradiction proves the first statement.

The second statement is proved similarly. By permuting the symbols ofM and possibly
interchanging two rows, we may assume that det(L) = det(M). Now argue as above, but
using Theorem 5.2. �

Regarding the above proof, we stress the importance of taking u = j to be the smallest
value with different numbers of j cycles. The conclusion may not be valid for some
larger u. To see this, consider u = n: Even if SL(e, f ) contains an n-cycle but SM (e, f )
does not, both per(L) and per(M) will have the same coefficient of xue x

n−u
f , namely 1.

The converses of the statements in Theorem 5.3 do not hold. There are examples of
pairs of latin squares that have the same profile but do not have similar determinants
or similar permanents. From [19] we know that there are 37 trisotopy classes of latin
square of order 9 in which every symbol cycle has length 9. It is easy to establish that no
two of these 37 classes have representatives whose permanents coincide, since they are
distinguished by Invariant #1 from §4. The determinants do not coincide either. Among
the 37 classes, there is only one pair whose determinants have the same number of
monomials with nonzero coefficients. That pair differs using Invariant #3.

6. NONTRISOTOPIC PAIRS INDISTINGUISHABLE BY PER OR DET

In this section, we describe a method for constructing infinitely many pairs of latin squares
that are not trisotopic but nevertheless have equal permanents and equal determinants.
We start by discussing a type of latin square that we will need later.

A latin square L is said to be all-even if ρr (L) is an even permutation for all rows r . It
was shown by Häggkvist and Janssen [13] that all-even latin squares constitute no more
than an exponentially small proportion of all latin squares. Despite this, they exist for all
orders n ≥ 3. Possibly the first person to show this was Ihringer [12]. The proof we offer
here is our own.

Lemma 6.1. For all n ≥ 3 there exists an all-even latin square of order n.

Proof. For odd n we simply use the Cayley table of the cyclic group: Every ρr is a
power of a cycle of length n, and hence is even. For n divisible by 4, we use a latin square
for which ρr consists of n/2 transpositions for all rows r except for one row where ρr is
the identity. Such a latin square is guaranteed to exist by [ 21, Thm. 14], and it is obvious
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for this square that every ρr is an even permutation. For n ≡ 2 mod 4 we start by taking
any latin square of the block form

(
E F

F E

)
,

whereE is an arbitrary latin square on the first n/2 symbols, andF is formed by replacing
every entry xi in E by xi+n/2, for all i ∈ [n/2]. We then swap two columns within the
copy of E in the bottom right corner (for this step, we require that n > 2). In the first n/2
rows, ρr consists of some cycles from the E block and cycles of matching lengths from
the F block. Thus all cycle lengths occur an even number of times in ρr , so ρr is even.
In the last n/2 rows, ρr differs from ρr−n/2 by n/2 + 1 transpositions, and hence is also
even. �

Suppose L is an all-even latin square of order n. As the product of two even permu-
tations, the row permutation ρr,s(L) must be even, for all r, s ∈ [n]. Crucially for our
purposes, this is an isotopy invariant property. In other words, any L′ isotopic to L will
have ρr,s(L′) being an even permutation for all r, s ∈ [n]. This result is not difficult to
see directly by noting that ρr,s is unchanged when we interchange two columns or two
symbols. (It can also be inferred from a conjugate result to Theorem 5.3, since isotopic
latin squares have similar permanents.)

Next, we introduce the structure that will play a key role in our main result for the
section. Suppose n = 3m for some integer m > 1. We say that a pair (A,B) of latin
squares of order n is suitable if they satisfy the following conditions:

(1) A and B are both comprised of an m×m array of 3 × 3 blocks.
(2) The block in the top left corner of A is

⎛
⎝ x0 x1 x2

x2 x0 x1

x1 x2 x0

⎞
⎠ . (7)

(3) The block in the top left corner of B is the transpose of (7).
(4) A agrees with B in every other block, and all other blocks have the form

⎛
⎝ xa xb xc
xb xc xa
xc xa xb

⎞
⎠ (8)

for some a, b, c ∈ [n].
(5) ρi(A) is an even permutation for i = 0, 3, 6, . . . , n− 3.
(6) There exists j ≥ 3 for which ρ0(AT ) and ρj (AT ) have the same parity.

The entire structure of a suitable pair (A,B) is determined by specifying the rows of
A indexed by 0, 3, 6, . . . , n− 3. We will exploit this observation later when specifying
suitable pairs. Our reason for being interested in such suitable pairs is as follows:

Theorem 6.2. Let A and B be a suitable pair of latin squares of order n > 3. Then A
and B are not trisotopic but nevertheless per(A) = per(B) and det(A) = det(B).

Proof. Suppose i ∈ {0, 3, 6, . . . , n− 3}. Condition 5 tells us that ρi(A) is even. Mean-
while Conditions 2 and 4 show that ρi,i+1 and ρi,i+2 consist of disjoint 3-cycles (which are
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even permutations), so ρi+1(A) and ρi+2(A) are both even. It follows that A is all-even.
However, Conditions 3 and 4 show that ρ0,3(B) differs by one transposition from ρ0,3(A),
and hence is odd. It follows that A and B are not isotopic. Similarly, Condition 6 ensures
that ρ0,j (BT ) is odd and hence A is not isotopic to BT either. In other words, A and B
are not trisotopic.

Let V be the set of cells in the 3 × 3 block in the top left corner ofA, and let V0, V1, V2

be the set of cells in V that contain the symbols x0, x1, x2 in A, respectively.
Define a permutation ζ = (0 1 2)(3 4 5)(6 7 8) · · · (n− 3 n− 2 n− 1) and let ξ be the

permutation of [n] × [n] defined by ξ (a, b) = (ζ (a), ζ−1(b)). By Condition 4, in both A
and B, the cell ξ (a, b) contains the same symbol as the cell (a, b), unless (a, b) ∈ V .

Consider the following involution � on the set of diagonals of A and B. For any
diagonal D with one of the properties:

(a) D includes strictly more cells from V1 than from V2, and has no cells from V0, or
(b) D includes a cell from V0, a cell from V2 and no cell from V1,

we define �(D) = ξ (D) and �(ξ (D)) = D. All other diagonals are defined to be fixed
points of �.

We claim for all D that the product of the entries on D in A equals the product of the
entries on �(D) in B. To test the validity of our claim, first note that it is trivial for all
diagonals that have an equal number of entries from V1 and V2. They are precisely the
diagonals that are fixed points of�. Any diagonalD moved by� is of one of four types:

� D has property (a): Then D contains cells in V1 but not in V2 or V0, in which case �
moves the cells in V1 to V2.

� D = �(D′) where D′ has property (a): Then D contains cells in V2 but not in V1 or
V0, in which case � moves the cells in V2 to V1.

� D has property (b): Then D contains a cell in V0, a cell in V2 and no cell in V1, in
which case � moves the cell in V2 to V0 and the cell in V0 to V1.

� D = �(D′) where D′ has property (b): Then D contains a cell in V0, a cell in V1 and
no cell in V2, in which case � moves the cell in V1 to V0 and the cell in V0 to V2.

The contents of cells outside V are unchanged by applying � and then changing from
A to B. The cells inside V interchange x1 and x2 when moving from A to B. This proves
our claim, which shows that per(A) = per(B). The fact that det(A) = det(B) follows by
noting that the permutations corresponding to D and �(D) have the same sign. �
Corollary 6.3. For all m ≥ 3 there exists a pair (A,B) of nontrisotopic latin squares
of order n = 3m that satisfy per(A) = per(B) and det(A) = det(B).

Proof. There are typically many ways to construct suitable pairs, but it suffices to give
one.

By Lemma 6.1 there is a latin square M of order m for which ρr (M) is even for all
r ∈ [m]. Let L be the direct product of M with a cyclic group of order 3, which we
form by replacing each entry, say xi , of M by a subsquare of the form (8) with a = 3i,
b = 3i + 1, c = 3i + 2. For each r ∈ [m], our construction ensures that ρ3r (L) will have
precisely nine inversions for every inversion in ρr (M). Hence ρ3r (L) will be even, given
that ρr (M) is even. Now replace the top left block of L by (7) to get A, and by the
transpose of (7) to get B. The first five conditions in the definition of suitable pairs will
now be satisfied. If the sixth condition fails we do one more step. Let Y and Z denote
the 3 × 3 blocks in rows indexed {0, 1, 2} and columns indexed {3, 4, 5} and {6, 7, 8},
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respectively. Choose two symbols in Y and interchange them within Y , in both A and B.
Do the same thing inZ. The overall effect is to change the parity of ρr (AT ) for 3 ≤ r ≤ 8
but to leave ρr (A) unchanged for all r ∈ [n]. In this way, Condition 6 can be satisfied
without spoiling any of the other conditions.

Applying Theorem 7 now gives the result. �

As an example, suppose m is odd. We may take ρ0(A) = (4 5)(7 8), which is an even
permutation. For i = 3, 6, 9, . . . , n− 3 define row i of A by aij = xi+j , where addition
in the subscript is modulo n. Completing A and B in the obvious manner produces a
suitable pair as constructed in Corollary 6.3.

We note that suitable pairs of latin squares of order n = 3m intersect in n2 − 6 cells
and have the same permanent. It is not possible for a pair of latin squares of order n to
intersect in n2 − 5, n2 − 3, n2 − 2, or n2 − 1 cells, see for example [3] or [8]. In the
next result, we see that for n > 2 it is not possible to construct a pair of latin squares that
intersect in n2 − 4 cells and that have the same permanent.

Theorem 6.4. LetA = [aij ] and B = [bij ] be two latin squares, of order n > 2, which
intersect in n2 − 4 cells. Then per(A) �= per(B).

Proof. Assume without loss of generality that a00 = a11 = x0, a01 = a10 = x1 and
b00 = b11 = x1, b01 = b10 = x0, but otherwise A and B agree in all remaining entries.

Then θ0,2(A) differs from θ0,2(B) by a transposition, and hence has different cycle
structure. Let j be the smallest value for which θ0,2(A) and θ0,2(B) have a different
number of cycles of length j . By (5), the coefficient of xj0x

n−2
2 is different in per(A) and

per(B). Thus per(A) �= per(B). �

However, we might ask under what conditions is per(A) similar to per(B). Certainly
it is similar whenever A and B are in the same trisotopy class. In [4] it was shown that
for all n ≥ 5 there exists a pair of isomorphic latin squares that differ in precisely four
entries. Such pairs of squares are necessarily trisotopic. However, it is unclear if there
are examples of two nontrisotopic latin squares, of the same order, which differ in four
cells but have similar permanents. The above analysis also hold for determinants.

The following questions were asked at the end of [9].

(Q1) For which orders are there nontrisotopic squares with similar determinants?
(Q2) Are there nontrisotopic squares with trivial autoparatopism group with similar

determinants?
(Q3) Are there nontrisotopic squares with full mapping group Sn with similar

determinants?

Obviously, Corollary 6.3 gives a partial answer to Q1, by showing that such squares
exist for all n ≥ 9 satisfying n ≡ 0 mod 3. We can also answer Q2 and Q3, in the positive,
with the following example of order 9. Consider the suitable pair (A,B) in which rows
0,3,6 of A are

[x0 x1 x2 x3 x4 x5 x6 x7 x8], [x3 x4 x6 x0 x7 x8 x2 x5 x1], [x5 x8 x7 x2 x1 x6 x0 x3 x4].

BothA andB have trivial autoparatopism group so, by Theorem 7, they answer Q2. They
also answer Q3 since ρ5,6(AT ) and ρ5,7(AT ) generate S9, and columns 5,6,7 of A agree
with the corresponding columns of B.
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7. INVARIANTS

Over the course of our investigation thus far, we have encountered several properties
that are invariant among latin squares with similar determinants or permanents. In this
section, we summarize those observations and add some extra ones.

Suppose that A,B,C, and D are latin squares, that per(A) is similar to per(B), and
det(C) is similar to det(D). Then

� A and B have the same order, since it is the degree of per(A) and per(B). Similarly,
C and D have the same order, since it is the degree of det(C) and det(D).

� A and B have the same profile by Theorem 6. It follows that for each k they have the
same number of symbol cycles of length k. The same is true for C and D.

� A and B have the same number of intercalates by the above, since intercalates are just
symbol cycles of length 2. Similarly, C and D have the same number of intercalates.

� A and B need not have the same number of row/column cycles of length k, if k > 2.
Similarly for C and D. Examples are easy to create using Theorem 7. For example,
take (A,B) = (C,D) to be the suitable pair of order 9 in which rows 0,3,6 of A are,
respectively:

[x0 x1 x2 x4 x3 x5 x7 x6 x8], [x5 x8 x7 x2 x1 x6 x4 x0 x3], [x6 x4 x3 x8 x7 x0 x2 x5 x1]. (9)

Here B has both row and column cycles of lengths 6 and 7, but A has no such cycles.
� A and B have the same number of transversals, since that number is the coefficient of
x1x2 · · · xn in per(A) and per(B).

� C and D need not have the same number of transversals. Indeed, we cannot always
tell from det(C) whether C has any transversals. For a concrete example, see (4).

� A and B need not have the same number of orthogonal mates. For example, consider
the suitable pair (A,B) of order 9 in which rows 0,3,6 of A are

[x0 x1 x2 x3 x4 x5 x6 x7 x8], [x3 x4 x6 x0 x7 x8 x2 x5 x1], [x5 x8 x7 x1 x2 x6 x4 x3 x0].

Here A has an orthogonal mate, and B has none.
� C and D need not have the same number of orthogonal mates. The previous example

suffices. Also, (4) is a good example, since the right hand square has 12,048 orthogonal
mates, while the left hand square has none.

� A and B have the same symbol parity since they have the same profile. It follows that
they have the same parity, in the classical sense. Likewise C and D have the same
symbol parity and the same parity. See [18, 20] for definitions of symbol parity and
parity, and a full exploration of their importance.

� A and B need not have the same row parity or the same column parity. Indeed, if
(A,B) are a suitable pair, then they necessarily have opposite row parity and opposite
column parity. Similarly for C, D.

� A and B need not have autoparatopism groups of the same order. Similarly, C and
D need not have autoparatopism groups of the same order. For example, consider the
suitable pair (A,B) of order 9 in which rows 0,3,6 of A are

[x0 x1 x2 x3 x4 x5 x6 x7 x8], [x3 x5 x4 x6 x7 x8 x0 x2 x1], [x6 x8 x7 x0 x2 x1 x3 x4 x5].
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In this case,A is not isotopic to any conjugate except itself. However,B is isotopic to its
conjugate that exchanges rows with symbols. We have |Par(A)| = 12 and |Par(B)| =
24. Also consider the suitable pair (A,B) of order 9 in which rows 0,3,6 of A are

[x0 x1 x2 x3 x4 x5 x6 x7 x8], [x3 x4 x5 x6 x7 x8 x0 x1 x2], [x6 x8 x7 x0 x1 x2 x3 x5 x4].

Here A is isotopic to three of its six conjugates, but B is only isotopic to one of its
conjugates (namely, itself). We have |Par(A)| = 2 and |Par(B)| = 6.

� A andB need not have full mapping groups of the same order. Similarly,C andD need
not have full mapping groups of the same order. For example, take (C,D) = (A,B)
to be the suitable pair defined in (9). In this case, Mlt(A) is the alternating group A9

and Mlt(B) is the symmetric group S9.

8. OPEN QUESTIONS

The examples we have encountered thus far did not settle the following questions.

� Are there nontrisotopic latin squares with equal determinants and equal permanents
for some orders that are not multiples of 3?

� Are there latin squares with equal permanents but dissimilar determinants? We ob-
served in §4 that there are latin squares of order 8 with equal determinants but
dissimilar permanents.

� Are there two latin squares with equal permanents, but with autotopism groups of
different orders?

� Are there two latin squares with equal permanents, but with different numbers of
k × k subsquares for some k > 2? It follows from Theorem 6 that latin squares with
equal permanents have the same number of 2 × 2 subsquares.

� Does there exist a latin square that is not isotopic to any group’s Cayley table, but
which nevertheless has the same permanent (or the same determinant) as the Cayley
table of some group?

� Does Theorem 3.3 hold without the assumption that εG maps to εH ?
� Is equality ever achieved in (3) for n > 3? For all large n are there examples achieving

(3) to within a factor of 1 − o(1)?
� Among the latin squares L of a given order n, does the Cayley table of the cyclic

group always minimize the number of monomials in det(L) and per(L)?

As explained in the introduction, the study of determinants of groups led to the
birth of representation theory. It is interesting to consider which algebraic properties of
quasigroups can be deduced from determinants of latin squares. For example, the fourth
open question above relates to the issue of whether associativity can be deduced from the
determinant. Also, Dickson [7] investigated the factorization of the group determinant
modulo a prime p. He showed that the determinant of any p-group P of order n is equal
modulo p to (

∑
q∈P xq)n. To what extent can this result be generalized to “group-like”

quasigroups such as Moufang loops?
Meanwhile, the permanent of a latin square records that combinations of symbols can

be found on the diagonals of the latin square. This natural combinatorial data contains a
wealth of information about the latin square. This paper has taken the first step in showing
how to extract some of that information.
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